美成功控制單分子厚度電路中的電流

作者: 2014年04月24日 來源: 瀏覽量:
字號:T | T
【摘要】科學(xué)家們在開發(fā)微觀電路方面面臨著一些障礙,比如如何可靠地控制流經(jīng)一個只有單分子厚度的電路中的電流?,F(xiàn)在,美國羅切斯特大學(xué)化學(xué)工程助理教授亞歷山大·謝斯特帕羅夫成功做到了這一點(diǎn),朝著研制納米級電

【摘要】科學(xué)家們在開發(fā)微觀電路方面面臨著一些障礙,比如如何可靠地控制流經(jīng)一個只有單分子厚度的電路中的電流?,F(xiàn)在,美國羅切斯特大學(xué)化學(xué)工程助理教授亞歷山大·謝斯特帕羅夫成功做到了這一點(diǎn),朝著研制納米級電路又邁進(jìn)了一步。

    科學(xué)家們在開發(fā)微觀電路方面面臨著一些障礙,比如如何可靠地控制流經(jīng)一個只有單分子厚度的電路中的電流?,F(xiàn)在,美國羅切斯特大學(xué)化學(xué)工程助理教授亞歷山大·謝斯特帕羅夫成功做到了這一點(diǎn),朝著研制納米級電路又邁進(jìn)了一步。

    “直到現(xiàn)在,科學(xué)家們一直無法可靠地直接引導(dǎo)電流從一個分子流向另一個分子?!敝x斯特帕羅夫說,“但這正是只有一個或兩個分子厚的電子電路工作時需要做的?!?/P>

    在這項實(shí)驗(yàn)中,謝斯特帕羅夫利用一個簡單的微觀電路為一個有機(jī)發(fā)光二極管(OLED)供電,電路的正負(fù)極之間通過一張只有一個分子厚的有機(jī)材料薄膜連接。最近公布的研究已經(jīng)表明,在如此薄的電路中,要控制電流在兩極之間的流動非常難。而謝斯特帕羅夫在發(fā)表于《先進(jìn)材料界面》雜志上的論文中解釋說,解決這一問題的關(guān)鍵是增加一個分子惰性層。

    據(jù)物理學(xué)家組織網(wǎng)4月22日(北京時間)報道,這個惰性層或非反應(yīng)性層是由直鏈有機(jī)分子構(gòu)成的。在其上面分布著一層環(huán)狀的芳香族分子,充當(dāng)傳導(dǎo)電子電荷的導(dǎo)線;而惰性層就如導(dǎo)線的塑料外殼一樣,可以起到絕緣的作用。由于下面的惰性層不能與上層發(fā)生反應(yīng),器件的電子特性僅通過上層就可以決定。

    借助這種雙層排列,謝斯特帕羅夫能夠?qū)﹄姾傻霓D(zhuǎn)移進(jìn)行調(diào)控。通過改變官能團(tuán)——用于取代分子中的氫并決定分子具有哪些獨(dú)特化學(xué)反應(yīng)的原子或原子團(tuán),他可以更準(zhǔn)確地控制電流在電極和上層有機(jī)分子層之間移動的速度。

    在分子電子器件中,一些官能團(tuán)會加快電荷轉(zhuǎn)移,另一些則可使電荷轉(zhuǎn)移速度慢下來。正是惰性層的加入,謝斯特帕羅夫能夠減少上層受到的干擾,由此便可通過改變官能團(tuán)來達(dá)到設(shè)備所需的精確的電荷轉(zhuǎn)移速度,例如,發(fā)光二極管可能需要更快的電荷轉(zhuǎn)移速度才能保持特定的發(fā)光;而生物醫(yī)學(xué)注射裝置可能需要電荷以更慢的速度轉(zhuǎn)移。

    雖然謝斯特帕羅夫克服了一個大障礙,但要讓雙層分子電子器件走向?qū)嶋H應(yīng)用,還需開展大量工作。下一個挑戰(zhàn)將是耐用性?!拔覀冮_發(fā)的這個系統(tǒng)在高溫下會迅速退化。”謝斯特帕羅夫說,“我們需要的是能夠持續(xù)運(yùn)行數(shù)年的設(shè)備,這得花點(diǎn)時間才能實(shí)現(xiàn)?!?/P>

全球化工設(shè)備網(wǎng)(http://www.bhmbl.cn )友情提醒,轉(zhuǎn)載請務(wù)必注明來源:全球化工設(shè)備網(wǎng)!違者必究.

標(biāo)簽:單分子厚度電路 電流

分享到:
免責(zé)聲明:1、本文系本網(wǎng)編輯轉(zhuǎn)載或者作者自行發(fā)布,本網(wǎng)發(fā)布文章的目的在于傳遞更多信息給訪問者,并不代表本網(wǎng)贊同其觀點(diǎn),同時本網(wǎng)亦不對文章內(nèi)容的真實(shí)性負(fù)責(zé)。
2、如涉及作品內(nèi)容、版權(quán)和其它問題,請在30日內(nèi)與本網(wǎng)聯(lián)系,我們將在第一時間作出適當(dāng)處理!有關(guān)作品版權(quán)事宜請聯(lián)系:+86-571-88970062