低壓線路保護(hù)裝置的設(shè)計

作者:戴金花 2015年07月27日 來源:江蘇安科瑞電器制造有限公司 瀏覽量:
字號:T | T
安科瑞戴金花   江蘇安科瑞電器制造有限公司江蘇江陰214405   摘要:設(shè)計了一種低壓線路專用保護(hù)裝置,可配合斷路器使用,對線路的過載、接地、過壓、欠壓等故障進(jìn)行保護(hù),提高低壓配電系統(tǒng)的用電安全和用電可靠

  安科瑞 戴金花

  江蘇安科瑞電器制造有限公司 江蘇江陰 214405

  摘要:設(shè)計了一種低壓線路專用保護(hù)裝置,可配合斷路器使用,對線路的過載、接地、過壓、欠壓等故障進(jìn)行保護(hù),提高低壓配電系統(tǒng)的用電安全和用電可靠性,簡化配電柜設(shè)計,提高自動化程度。

  關(guān)鍵詞: 低壓線路保護(hù);反時限曲線;過流保護(hù);硬件電路

  0 引言

  目前低壓(交流不超過1000V或直流不超過1500V)配電保護(hù)多選用塑殼斷路器、熔斷器或剩余電流動作保護(hù)器,實現(xiàn)速斷、長延時保護(hù),但很多塑殼斷路器動作精度不夠,難以實現(xiàn)級間選擇性配合,可能會造成上下級連跳、擴(kuò)大事故。另外,塑殼斷路器不具備信號實時監(jiān)測顯示、事件記錄和通訊組網(wǎng)等功能。

  因此,本文設(shè)計一種低壓線路保護(hù)裝置,配合斷路器使用,可以對線路的過載、接地、過壓、欠壓等故障進(jìn)行保護(hù)。

  1 低壓線路保護(hù)裝置的設(shè)計

  低壓線路保護(hù)裝置用于AC 400V(或690V)電壓等級中的產(chǎn)品,安裝在低壓饋線柜中,采用嵌入式或?qū)к壈惭b。產(chǎn)品的正常工作條件:工作溫度為-10℃~+55℃,海拔不高于2000米,環(huán)境中無明顯腐蝕性氣體,濕度≤95%,不結(jié)露。為滿足配電標(biāo)準(zhǔn)中對線路過載、接地故障的保護(hù)要求,設(shè)計有兩段定時限保護(hù)和反時限保護(hù)(標(biāo)準(zhǔn)反時限、極端反時限等8種曲線),另外帶有欠壓保護(hù)和過壓保護(hù)等多種保護(hù)功能。裝置由硬件平臺和軟件平臺組成。硬件組成框圖如圖1所示?! ?/FONT>

 

  圖1 硬件組成框圖

  1.1 主要硬件電路的設(shè)計

  在低壓系統(tǒng)中當(dāng)大功率電機(jī)起動時,可能引起電網(wǎng)電壓瞬間降低。為防止電壓降低引起裝置誤動作,裝置電源輸入范圍設(shè)計為AC 85V~AC 265V;在有些場所中,低壓控制回路會采用直流供電(DC 110V或DC 220V),因此電源需要支持交流和直流兩種方式。常用的線性電源不能很好的滿足這些要求,因此采用開關(guān)電源方案來設(shè)計裝置電源。本裝置使用PI公司的開關(guān)電源芯片做電源設(shè)計,整體功率在8VA左右,電源的輸入、輸出間要滿足2kV工頻耐壓(工頻耐壓等級可參見GB 14048-2012《低壓開關(guān)設(shè)備和控制設(shè)備》),能通過4級電涌試驗。在開關(guān)電源中,通過使用PI Expert自帶的變壓器設(shè)計軟件降低變壓器的設(shè)計難度。開關(guān)變壓器設(shè)計簡單描述如下:拓?fù)浣Y(jié)構(gòu)為反激式,反饋類型為次級TL431,輸入電壓選為通用型(85~265)V,根據(jù)實際情況設(shè)計輸出電壓和功率,需要輸出電壓隔離時可在疊加選項中將輸出設(shè)置為分離式。變壓器設(shè)計時,需要綜合考慮效率、磁通密度、鐵芯、骨架等參數(shù),有時調(diào)整效率會引起磁通變化,反而使變壓器性能變差。變壓器設(shè)計完成后進(jìn)行PCB設(shè)計,可以參考PI Expert推薦的布局、布線,減小環(huán)路,以防帶來不可預(yù)知的干擾信號。

  低壓饋線中的電壓、電流信號相對于本裝置內(nèi)部的采集電路屬于高電壓、大電流信號,需要將其變?yōu)榈蛪?、小電流信號。選用電壓互感器、電流互感器時,需結(jié)合產(chǎn)品特點,如普通電測儀表選用電流互感器時,只考慮過載能力為額定值的120%,但保護(hù)裝置需考慮使用5P10、10P20甚至更高過載能力的保護(hù)級電流互感器。設(shè)計采樣電路時需要綜合考慮電阻的功率、電壓、溫漂系數(shù)、精度等參數(shù)。如使用10P20電流互感器設(shè)計電流采樣電路時,同樣要考慮能承受20倍過載(互感器二次側(cè))的取樣電阻。取樣電阻選取后,再設(shè)計后級的信號處理電路。信號處理電路包括濾波、放大等電路。濾波電路設(shè)計時一般會采用低通濾波,濾除不需要的干擾信息,濾波截止頻率要與軟件采樣頻率匹配。信號放大電路設(shè)計時需考慮信號范圍、線性度等參數(shù),必要時需要做分段處理。該裝置直接采用交流放大,配合軟件完成真有效值計算、矢量計算等。

  1.2 軟件設(shè)計

  現(xiàn)階段的低壓供電系統(tǒng)會存在諧波源,給電網(wǎng)帶來諧波污染,因此低壓線路保護(hù)裝置需要選取基于非正弦信號的測量算法?;诜钦倚盘査惴òǜ道锶~算法、一階差分后半波傅里葉算法、真有效值等算法。傅里葉算法可以分解出各整次諧波信息,在保護(hù)類產(chǎn)品中被大量使用。如果出現(xiàn)頻率偏移、信號中帶有衰減的直流分量時,需要采取相應(yīng)的措施,否則造成計算錯誤。

  針對線路過載、接地故障,低壓線路保護(hù)裝置帶有反時限保護(hù)功能。反時限可以簡單的理解為:電流越大,保護(hù)動作越快,電流越小,保護(hù)動作時間越長。在電力系統(tǒng)繼電保護(hù)中,反時限電流保護(hù)是廣泛應(yīng)用于發(fā)電機(jī)、變壓器、電動機(jī)以及輸電線路的保護(hù)。反時限過流保護(hù)通?;谌缦碌臅r間—電流反時限特性:

  Ir*t=K (1)

  其中,K為系數(shù),r根據(jù)保護(hù)的不同使用場合而取不同的值:一般在被保護(hù)線路首端和末端短路、電流變化較小的情況下,采用定時限過流保護(hù),定時限可以認(rèn)為是一種特殊的反時限特性,即r=0;而在線路首末端短路、電流變化較大的情況下,則采用非常反時限特性,即r=1;通常輸電線路采用一般反時限特性,即0

  典型的反時限特性曲線如圖2所示,圖中I/IOPR表示電流過流倍數(shù)[8]?! ?/FONT>

 

  圖2 典型反時限曲線

  該裝置的反時限保護(hù)符合

  

 

  (2)

  式中:

  t - 跳閘時間

  K - 系數(shù)(見表1)

  I - 電流測量值

  Is - 程序設(shè)定的門限值

  α - 系數(shù)(見表1)

  L - ANSI/IEEE系數(shù)(見表1)

  Tp - 時間因子

  反時限過流保護(hù)曲線特性表如表1所示。

  表1 反時限過流保護(hù)曲線特性表  

 

  式(2)中,α=0.02時直接計算較困難,可以采用查表法、泰勒展開、曲線擬合等方法進(jìn)行計算

  (1)采用查表法,令X=(I/Is),X在1.1~20間變化,變化步長為△X,每個步長計算一次X0.02,將計算結(jié)果存放到EEPROM中,實際電流有波動區(qū)間,所以計算步長不宜設(shè)置過大或過小,過大會影響X計算精度,導(dǎo)致t超差;步長過小,或加大EEPROM開銷。

  (2)采用查表法,實際值與X相等時可以直接讀取,不相等時通過插值算法計算所需數(shù)值,但EEPROM開銷太大。

  (3)按照泰勒級數(shù)展開,即可以計算得X,當(dāng)n=5時相對誤差為0.44%,滿足計算的時間精度要求,但運算量較大。

  (4)曲線擬合算法通過容易計算的曲線替代復(fù)雜曲線來簡化計算過程,關(guān)鍵在于選取正確的擬合曲線。

  2 實際應(yīng)用

  某石化工程中需要對幾個低壓重要的饋線回路做過載、不平衡和接地保護(hù),過載要求具有兩段過流保護(hù)和反時限保護(hù),并能配合后臺的電力監(jiān)控系統(tǒng)進(jìn)行參數(shù)讀取,通訊協(xié)議為MODBUS-RTU,可以在保護(hù)裝置上直接顯示電流、分合閘狀態(tài)和故障信息,可以記錄分合閘信息、故障信息。

  本文介紹的低壓線路保護(hù)裝置具備兩段定時限過流保護(hù),通過內(nèi)部計算零序電流的方式判斷接地故障,根據(jù)三相電流值做電流不平衡計算,并帶有中文液晶顯示、分合閘記錄、故障記錄,通訊等功能,完全滿足要求。低壓線路保護(hù)裝置應(yīng)用二次原理圖見圖3所示。圖3中,通過電流互感器(1TA~3TA)實現(xiàn)主回路電流隔離、變換,電流互感器二次信號輸入給本裝置,本裝置根據(jù)實際電流情況執(zhí)行相應(yīng)的過載、接地保護(hù),要控制斷路器分合閘時需加上相應(yīng)的分勵線圈、合閘線圈,無需通過裝置自動合閘。所以圖3中沒有合閘線圈,僅帶有分勵線圈,在分?jǐn)喾謩罹€圈時需要使用脈沖信號,或者將斷路器的常開點串入?! ?/FONT>

 

  圖3 低壓線路保護(hù)裝置應(yīng)用二次原理圖

  3 結(jié)束

  低壓線路保護(hù)裝置可以測量三相電流、三相電壓、剩余電流、功率、頻率和電能等參數(shù),測量參數(shù)可在裝置上顯示,也可以通過RS-485通訊口上傳給后臺監(jiān)控系統(tǒng),可對線路的過負(fù)荷、接地、過壓和欠壓等故障進(jìn)行保護(hù)。低壓線路保護(hù)裝置專為低壓饋線設(shè)計,可用于電廠電氣監(jiān)控、工廠自動化、建筑電氣配電和石化等場所。

  文章來源:《現(xiàn)代建筑電氣》2015年6期。

  參考文獻(xiàn)

  [1] 張鋼,劉志剛,岳岱巍,基于TOPSwitch及PI Expert的單端反激式開關(guān)電源設(shè)計[J].電源技術(shù)應(yīng)用,2007,2(2):1-4.

  ZHANG Gang, LIU Zhi-gang, YUE Dai-wei,SHEN Mao-sheng. Design of a M ultiple Output Flyback Switching Mode Power Supply Based on TOPSwitch and PI Expert [J]. POWER SUPPLY TECHNOLOGIES AND APPLICATIONS , 2007,2 (2): 1-4.

  [2] 何華鋒,胡昌華,代延民. 高精度A/D采樣電路的干擾分析與電路設(shè)計[J]. 電光與控制,2005,10(5):73-75.

  HE Huafeng ,  HU Changhua , DAI Yanmin. Interference analysis and design of high2precision A/ D sampling circuit [J]. ELECTRONICS OPTICS &CONTROL, 2005,10(5):73-75.

  [3] 陳利玲,李杭生. 付立葉變換在交流采樣中的應(yīng)用[J].電子測量與儀器學(xué)報,2005增刊,171-174.

  CHEN Li-ling,LI Hang-sheng.Application of Fourier Transform in Alternative Sampling[J].Journal of Electronic, 2005,171-174.

  [4] 周 軍,李孝文,盛艷.準(zhǔn)同步采樣在電力系統(tǒng)頻率、頻偏和相位差測量中的應(yīng)用[J]. 計量學(xué)報,1999,20(2):151-154.

  Zhou Jun,Li Xiaowen,Sheng Yan. Application of Double·Speed Synchronous Sampling[J]. ACTA METRoLoGICA SINICA,1999,20(2):151-154.

  [5] 戴先中.準(zhǔn)同步采樣及其在非正弦功率測量中的應(yīng)用[J].儀器儀表學(xué)報,1984;5(4) 390-396.

  DAI Xian-zhong.The Quasisynchronous Sampling and its Application in the Measurement of Nonsinusoidal Power.CHINESE JOURNAL OF SCIENTIFIC INSTRUMENT.

  [6] 何立志. 工頻量快速測量方法的研究[J].電測與儀表,2001,4:16-18.

  He Lizhi.The research of the fast-measuring methods for main frequency parameters[J]. Electrical Measurement & Instrumentation,2001,4:16-18.

  [7] 徐忠林,葉一麟,等. 一種微機(jī)反時限過流保護(hù)的新算法[J]. 電力自動化設(shè)備,1996,25(8):3-6.

  XU Zong-lin,YE Yi-tan,et al. A New Algorithm for the Microprocessor-based Inverse-time Overcurrent Relay[J].Electtic Power Automation Equipment,1996,25(8):3-6.

  [8] 嚴(yán)支斌,尹項根,邵德軍,劉革明.新型微機(jī)反時限過流保護(hù)曲線特性及算法研究[J].繼電器,2005,4(8):44-46.

  YAN Zhi-bin,YIN Xiao-ge,SHAO De-jun,LIU Ge-ming. Research on curve characteristics and algorithms of new digital inverse-time overcurrent[J]. RELAY, 2005,4(8):44-46.

  [9] Kojovic LA.Rogowski Coils Suit Relay Protection and Measurement[J].IEEE Computer Application andElectric Power,1997,10:47-52.

 

  作者簡介:戴金花,女,本科,江蘇安科瑞電器制造有限公司,主要研究方向為智能建筑供配電監(jiān)控系統(tǒng)。Email:2880157871@qq.com QQ:2880157871 手機(jī):18860995103 電話:0510-86179967 傳真:0510-86179963網(wǎng)址:http://www.acrel-et.com/

全球化工設(shè)備網(wǎng)(http://www.bhmbl.cn )友情提醒,轉(zhuǎn)載請務(wù)必注明來源:全球化工設(shè)備網(wǎng)!違者必究.

標(biāo)簽:低壓線路保護(hù)裝置

分享到:
免責(zé)聲明:1、本文系本網(wǎng)編輯轉(zhuǎn)載或者作者自行發(fā)布,本網(wǎng)發(fā)布文章的目的在于傳遞更多信息給訪問者,并不代表本網(wǎng)贊同其觀點,同時本網(wǎng)亦不對文章內(nèi)容的真實性負(fù)責(zé)。
2、如涉及作品內(nèi)容、版權(quán)和其它問題,請在30日內(nèi)與本網(wǎng)聯(lián)系,我們將在第一時間作出適當(dāng)處理!有關(guān)作品版權(quán)事宜請聯(lián)系:+86-571-88970062